Min comment interval: 14 seconds
Remaining character count: 4000
Remaining character count: 4000
Spoiler Image
Shortcuts: "C" opens comments. "R" refreshes comments.
Record voice message?
Anonymous comments allowed.
61 comments displayed.
#254 to #7

downwiththesicknes (08/18/2011) []
i also have this mat in my room and I'm also 17.... what the ****
#261 to #259

ghettohunter (08/18/2011) []
i would line up my cars pretending there was a traffic jam :P
#265 to #261

KillYourself (08/18/2011) []
I always put the cool cars at the beach and the broken ones by the hospital
#198 to #7

disturbdplayer (08/18/2011) [] dude, i have that EXACT mat rolled up, propped against the corner of my room. i feel like unrolling it and playinh with my old hotwheels again
pic unrelated
pic unrelated
#23 to #15

ningyoaijin ONLINE (08/17/2011) []
I fear for the future of the human race, when people need to use calculators for simple numerical calculations.
#85 to #29

themage (08/18/2011) []
You can't just bring extra decimal places out of nowhere.
x = 0.999
10x = 9.99 (Type in 0.999 x 10 into your calculator in case you're confused.)
10x  x = 9.99  0.999
9x = 8.991
x = 0.999
Same logic with four or more decimal places
x = 0.9999
10x = 9.999
10x  x = 9.999  0.9999
9x = 8.9991
x = 0.9999
Again type into calculator if you're confused.
x = 0.999
10x = 9.99 (Type in 0.999 x 10 into your calculator in case you're confused.)
10x  x = 9.99  0.999
9x = 8.991
x = 0.999
Same logic with four or more decimal places
x = 0.9999
10x = 9.999
10x  x = 9.999  0.9999
9x = 8.9991
x = 0.9999
Again type into calculator if you're confused.
#159 to #85

highaspinkiepie (08/18/2011) []
the ... after 0.999 (like so: 0.999...) indicate that there are infinite nines
#537 to #85

anon (08/18/2011) []
This is the logic behind this situation.
X = 0.9999...
10X = 9.999...
10X  X equates to 9.999...  0.999...
Since we're working with subtraction, we must make sure we align the decimal points.
Ergo:
9.999...
0.999...
________
9.000...
We've essentially removed the repeating decimal to get nine.
Now back to the algebraic expression 10X  X.
We've already deduced that this equals 9.
This expression simplifies down to 9X (10 plus negative one is nine.)
So one would assume that 9X = 10X  X which, as we saw, was equal to 9.
Following this, we have the expression 9X = 9.
Standard algebra tells us to isolate the variable X.
We do this by dividing both sides by 9, giving 9X/9 = 9/9
This simplifies to X = 1.
Now for the explanation at the heart of this seemingly confusing problem. The error lies in the fact that the decimal repeats indefinitely. The reciprocal of X is a 1 followed by an infinitely small decimal point. The fact is that simple algebra cannot handle this equation. This falls under the field of calculus.
Essentially.
X = 0.9999...
10X = 9.999...
10X  X equates to 9.999...  0.999...
Since we're working with subtraction, we must make sure we align the decimal points.
Ergo:
9.999...
0.999...
________
9.000...
We've essentially removed the repeating decimal to get nine.
Now back to the algebraic expression 10X  X.
We've already deduced that this equals 9.
This expression simplifies down to 9X (10 plus negative one is nine.)
So one would assume that 9X = 10X  X which, as we saw, was equal to 9.
Following this, we have the expression 9X = 9.
Standard algebra tells us to isolate the variable X.
We do this by dividing both sides by 9, giving 9X/9 = 9/9
This simplifies to X = 1.
Now for the explanation at the heart of this seemingly confusing problem. The error lies in the fact that the decimal repeats indefinitely. The reciprocal of X is a 1 followed by an infinitely small decimal point. The fact is that simple algebra cannot handle this equation. This falls under the field of calculus.
Essentially.
#351 to #9

shattubatu (08/18/2011) []
Guys, this troll logic is actually true.
0.9 recurring is equal to one.
Here's another way to prove it:
1/9=0.1111...
Multiply both sides by 9
9/9=0.99999...
Hence: 1=0.99999...
There are a ton of other proofs, just google it.
0.9 recurring is equal to one.
Here's another way to prove it:
1/9=0.1111...
Multiply both sides by 9
9/9=0.99999...
Hence: 1=0.99999...
There are a ton of other proofs, just google it.
#545 to #436

shattubatu (08/20/2011) []
I don't divide at all, that proof your teacher did was for proving that 1=2, an erroneous statement that relies on fallacy (dividing by zero).
This statement of 0.999...=1 is true and there are about one hundred ways to prove it beyond doubt.
This statement of 0.999...=1 is true and there are about one hundred ways to prove it beyond doubt.
#256 to #248

thatnerdyguy (08/18/2011) []
I had that one, and another car carpet that was different, and which I liked slightly more (the roads were a little wider).
#354 to #339

elitetroll (08/18/2011) []
why not just make an account? more fun? and most people do not respect anon